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INTRODUCTION



Light 400 - 700 nm is most important for vision



How dependent are we on 
colour?



No colour… Which are the apples, oranges, 
and grapefruits?



Colour…



But how important is colour?



Split the image into...

ACHROMATIC COMPONENTS

CHROMATIC COMPONENTS



By itself chromatic information provides relatively 
limited information…

CHROMATIC COMPONENTS



Achromatic information important for fine detail …

ACHROMATIC COMPONENTS



An image of the world is 
projected by the cornea and lens 
onto the rear surface of the eye: 
the retina.

The back of the retina is carpeted 
by a layer of light-sensitive 
photoreceptors (rods and cones).  

How do we see colours?



Short-wavelength-
sensitive (S) or 
“blue” cone

Middle-wavelength-
sensitive (M) or 
“green” cone

Long-wavelength-
sensitive (L) or 
“red” cone

Cones
 Daytime, achromatic 

and chromatic vision
 3 types

Human photoreceptors



Human photoreceptors

Rods
 Achromatic 

night vision
 1 type

Short-wavelength-
sensitive (S) or “blue” 
cone

Middle-wavelength-
sensitive (M) or 
“green” cone

Long-wavelength-
sensitive (L) or 
“red” cone

Cones
 Daytime, achromatic 

and chromatic vision
 3 types

Rod



0.3 mm of eccentricity is 
about 1 deg of visual angle

Rod and cone distribution



Central fovea is rod-free, and the very 
central foveola is rod- and S-cone free  
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Four human photoreceptors have different spectral sensitivities

λmax (nm, corneal, quantal)
441 500 541 566

Note logarithmic 
scale
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Colour…

Is it mainly a property of physics or biology?



Colour isn’t just about physics. For example:

though physically very different, can appear identical.

Two metamers 
of yellow

+



There are many other such 
metamers or matches…









What can colour mixing 
tell us about colour

vision? 



Human vision is 
trichromatic



Trichromacy means that 
colour vision is relatively 
simple.

It is a 3 variable system…



Trichromacy is exploited in colour reproduction, since 
the myriad of colours perceived can be produced by 
mixing together small dots of three colours.

If you look closely at a colour television (or this projector output)…

3-coloured dots 3-coloured bars

Colour TV



The dots produced by a TV or projector are so 
small that they are mixed together by the eye 
and thus appear as uniform patches of colour



Why is human vision trichromatic?



Short-wavelength-
sensitive or “blue”

Middle-wavelength-
sensitive or “green”

Long-wavelength-
sensitive or “red”

One reason is that just three cone photo-receptors underlie 
daytime colour vision. But what is it about each of them that 
makes colour vision trichromatic?



Vision at the photoreceptor stage is 
relatively simple because the output of 

each photoreceptor is:

UNIVARIANT

What does univariant mean?

Use Middle-wavelength-sensitive (M) cones as an example…



The effect of  any absorbed photon is independent of its wavelength.

M-cone

Once absorbed a photon produces the same change in 
photoreceptor output whatever its wavelength.

UNIVARIANCE



Crucially, the effect of  any absorbed 
photon is independent of its wavelength.

M-cone

All the photoreceptor effectively does is to count photons.

UNIVARIANCE



What does vary with wavelength is the 
probability that a photon will be absorbed.

UNIVARIANCE

This is reflected in what is called a 
“spectral sensitivity function”.
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M-cone spectral sensitivity function

Low sensitivity
(more photons needed 

to have an effect)

High sensitivity
(less photons needed 

to have an effect)
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Consider the sensitivity to these photons…

> >> > > >
In order of M-cone sensitivity:
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Imagine four lights of the 
same intensity (indicated here 
by their  height)

The green will look brightest, 
then yellow, then blue and lastly 
the red will be the dimmest
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We can adjust the intensities 
to compensate for the 
sensitivity differences.

When this is done, the four 
lights will look completely 
identical.



M-cone

Changes in light intensity are confounded 
with changes in colour (wavelength)



A change in photoreceptor output can be caused by a change in 
intensity or by a change in colour. There is no way of telling which. 

Each photoreceptor is therefore ‘colour blind’, and is unable to 
distinguish between changes in colour and changes in intensity.

UNIVARIANCE

Colour or intensity 
change??



Univariance in suction
electrode recordings



If we had only one photoreceptor, we would be colour-blind…

Examples: night vision, blue cone monochromats



If we had only one photoreceptor, we would be colour-blind…

Examples: night vision, blue cone monochromats



Univariance

If a cone is n times less sensitive to light A than 
to light B, then if A is set to be n times brighter 

than B, the two lights will appear identical 
whatever their wavelengths.



People with normal colour vision have 
three univariant cones with different 

spectral sensitivities…
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Their colour vision is therefore three dimensional or:

TRICHROMATIC



Trichromacy means our colour 
vision is actually limited

We confuse many pairs of colours that are spectrally very 
different.  Such pairs are known as metameric pairs.

Many of these confusions would be obvious to a being 
with 4 cone photoreceptors—just as the confusions of 
colour deficient people are obvious to us.



So, if each photoreceptor is colour-
blind, how do we see colour?

Or to put it another way: How 
is colour encoded at the input 

to the visual system?



Blue light Red light

White lightYellow light

Green light Purple light

Colour is encoded by the relative cone outputs



DETERMINING CONE 
SPECTRAL SENSITIVITIES



In other words:

How might we do that?

We want to measure how the sensitivity of 
each cone type varies with wavelength.



Spectral sensitivity measurements

Flashing or flickering light

Space (x)

In
te

ns
ity Observer sets the threshold for 

detecting the flash or flicker as a 
function of the wavelength of the light.



Spectral sensitivity measurements

Flashing or flickering light
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function of the wavelength of the light.



Spectral sensitivity measurements

Flashing or flickering light

Space (x)
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detecting the flash or flicker as a 
function of the wavelength of the light.



Spectral sensitivity measurements

Flashing or flickering light

Space (x)

In
te

ns
ity Observer sets the threshold for 

detecting the flash or flicker as a 
function of the wavelength of the light.



Consequently, to measure them separately we have 
to use special subjects or special conditions.
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But the cone spectral sensitivities overlap throughout the spectrum.



M- and L-cone measurements

Use two special types of subjects:

Deuteranopes
Protanopes



Normal Protanope

SML SML
Protanopia



Normal Deuteranope

SML SML
Deuteranopia
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S-cone measurements

Two types of subjects:

S-cone (or blue cone) monochromats
Colour normals



Normal S-cone monochromat

SML SML
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S-cone data

The Normal data were 
obtained on an intense orange 

adapting background that 
adapted (suppressed) the L-

and M-cones.
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These mean functions have 
enabled us to derive 
“standard” cone spectral 
sensitivity functions.

Mean spectral sensitivity functions
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A knowledge of the spectral sensitivities of the cones is 
important because it allows us to accurately and simply 
specify colours and to predict colour matches—for both 
colour normal and colour deficient people (and to 
understand the variability between individuals).

Practical implications for colour printing, colour 
reproduction and colour technology.

Why study spectral sensitivities?



Normal Tritanope

SML SML
Tritanopia



Deuteranope

SML
Dogs are dichromats with only two 
cones peaking at 429 and 555 nm

Credit: Euro 
Puppy Blog



COLOUR VISION AND 
MOLECULAR GENETICS



DeuteranopeNormal

ProtanopeTritanope

From Sharpe, Stockman, Jägle & Nathans, 1999



Amino acid differences 
between photopigment 
opsins

From Sharpe, Stockman, Jägle & Nathans, 1999



490 - 500 nm

Humans

lost

lost

365 - 450 nm

Duplication

Basis for 
trichromatic 
colour vision

Credit: Bowmaker



Gene duplication on the X-chromosome

L-cone 
photopigment 

opsin gene

M-cone 
photopigment 

opsin gene

Mammal

Human/ Old world 
primate



Because these two genes are in a 
tandem array, and are very similar…

L-cone 
photopigment 

opsin gene

M-cone 
photopigment 

opsin gene



From Sharpe, Stockman, Jägle & Nathans, 1999

Crossovers during meiosis are 
common:

Intergenic crossovers produce more or less numbers of L 
and M-cone genes on each X chromosome

Intergenic crossover



From Sharpe, Stockman, Jägle & Nathans, 1999

Hybrid (mixed) 
L/M genes

Intragenic crossover

Intragenic crossover

Intergenic crossover

Intragenic crossovers produce hybrid or mixed L and M-cone genes



The spectral sensitivities of the hybrid 
photopigments vary between those of the 
M- and L-cones depending on where the 
crossover occurs.
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M

L

More M-cone
like

More L-cone
like



Single-gene dichromats

Protanope

Deuteranope

With just a single gene a 
male (with only one X-
chromosome)  must be 
a dichromat



Deuteranope



Protanope



Multiple-gene dichromats

Males with two genes may also be 
effectively dichromats if the two 

genes produce very similar 
photopigments.



Anomalous trichromats

Protanomalous

Males with two different 
genes are anomalous 

trichromats

Deuteranomalous

Mild

Severe

Severe



350 450 550 650 750
0.0

0.5

1.0

Normal

350 450 550 650 750
0.0

0.5

1.0

350 450 550 650 750
0.0

0.5

1.0

Severe 
Protan

350 450 550 650 750
0.0

0.5

1.0

Severe
Deutan

Mild 
Protan



Main types of colour vision defects with approximate 
proportions of appearance in the population.

percent in UK

Condition Male Female

Protanopia no L cone 1.0 0.02 
Protanomaly milder form 1.0 0.03

Deuteranopia no M cone 1.5 0.01 
Deuteranomaly milder form 5.0 0.4

Tritanopia no SWS cone 0.008 0.008



XY inheritance

(S-cone opsin gene is on 
chromosome 7) 



DIAGNOSING COLOUR VISION 
DEFICIENCIES



Ishihara plates







Farnsworth-Munsell D-15 test

Farnsworth-Munsell 100-hue test

Tests measuring colour discrimination



From: Ted Sharpe

Farnsworth-Munsell D-15



From: Ted Sharpe

Farnsworth-Munsell D-15



D15 results

Protan

Credit: Jenny Birch

Deutan

Tritan

Rod
monochromat

Mild Severe



POSTRECEPTORAL
COLOUR VISION



Blue light Red light

White lightYellow light

Green light Purple light

Colour is encoded initially by the relative 
outputs of the three different cone types.



But what happens next (i.e., how is colour 
encoded after the photoreceptors)?



Colour phenomenology

Which pairs of colours coexist in a single, 
uniform patch of colour?
Which pairs never coexist?

WHY?

Can provide clues about how colours are processed 
after the photoreceptors…



Reddish-yellows?



Reddish-blues?



Reddish-greens?



Bluish-yellow? 



The colour opponent theory of Hering

Reds can get bluer or yellower but not greener



The colour opponent theory of Hering

Reds can get bluer or yellower but not greener



The colour opponent theory of Hering

Yellows can get greener or redder but not bluer



The colour opponent theory of Hering

Greens can get bluer or yellower but not redder



The colour opponent theory of Hering

Blues can get greener or redder but not yellower



The colour opponent theory of Hering



The colour opponent theory of Hering

is opposed to

is opposed to

R-G

Y-B

How might this be related to visual 
processing after the cones?



Some ganglion cells are 
colour opponent

Imagine that this is the region 
of space that the cell “sees” in 

the external world



A red light falling on the central area 
excites the cell (makes it fire faster)

Some ganglion cells are 
colour opponent



Some ganglion cells are 
colour opponent

A green light falling on the surround area 
inhibits the cell (makes it fire slower)



Some ganglion cells are 
colour opponent

RED On-centre
GREEN Off-surround



Some ganglion cells are 
colour opponent

GREEN On-centre
RED Off-surround



Red-green colour opponency

Four 
variants



Source: David Heeger

Blue/yellow pathway





LGN cell 
responses

LESS 
COMMON



So far, we’ve mainly been talking about the colours of 
isolated patches of light. But the colour of a patch 
depends also upon:

COLOUR AFTER-EFFECTS

(i) What precedes it (in time)

(ii) What surrounds it (in space)

COLOUR ASSIMILATION

COLOUR CONTRAST



COLOUR AFTER-EFFECTS

(what precedes the patch)



Colour
after-effects





Mediafire





Lilac chaser or Pac-Man illusion

Jeremy Hinton



Michael Bach and Jeremy Hintonhttp://michaelbach.de/ot/index.html

Lilac chaser or Pac-Man illusion



+



+



+



COLOUR CONTRAST

(what surrounds the patch)



Color contrast



MacLeod



COLOUR ASSIMILATION





Munker 
illusion



OTHER EFFECTS



Colour contrast and colour constancy



Monet, Claude
The Regatta at Argenteuil
c. 1872
19 x 29 1/2 in. (48 x 75 cm)
Musee d'Orsay, Paris



COLOUR AND COGNITION



Stroop effect

Say to yourself the colours of the ink in which the 
following words are written -- as fast as you can.

So, for RED, say “red”.

But for RED, say “green”

Ready, steady…



TEST 1

How long?

RED

BLUE

GREEN YELLOW PINK

ORANGE

WHITE

BROWN RED

BLUE

BLUE

YELLOW

YELLOW

ORANGE

GREEN BROWN

BROWN

WHITE

GREEN

RED

PINK

ORANGE

RED

WHITE

GREEN



TEST 2

How long?

BLUE

WHITE

PINK RED BROWN

BROWN

RED

BROWN RED

WHITE

RED

BLUE

RED

WHITE

BLUE GREEN

GREEN

ORANGE

YELLOW

WHITE

RED

PINK

ORANGE

GREEN

BLUE
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